229 research outputs found

    On stabilizability and exact observability of stochastic systems with their applications

    Full text link
    This paper discusses the stabilizability, weak stabilizability, exact observability and robust quadratic stabilizability of linear stochastic control systems. By means of the spectrum technique of the generalized Lyapunov operator, a necessary and sufficient condition is given for stabilizability and weak stabilizability of stochastic systems, respectively. Some new concepts called unremovable spectrums, strong solutions, and weakly feedback stabilizing solutions are introduced. An unremovable spectrum theorem is given, which generalizes the corresponding theorem of deterministic systems to stochastic systems. A stochastic Popov-Belevith-Hautus (PBH) criterion for exact observability is obtained. For applications, we give a comparison theorem for generalized algebraic Riccati equations (GAREs), and two results on Lyapunov-type equations are obtained, which improve the previous works. Finally, we also discuss robust quadratic stabilization of uncertain stochastic systems, and a necessary and sufficient condition is given for quadratic stabilization via a linear matrix inequality (LMI)

    Multiple chaotic central pattern generators with learning for legged locomotion and malfunction compensation

    Full text link
    An originally chaotic system can be controlled into various periodic dynamics. When it is implemented into a legged robot's locomotion control as a central pattern generator (CPG), sophisticated gait patterns arise so that the robot can perform various walking behaviors. However, such a single chaotic CPG controller has difficulties dealing with leg malfunction. Specifically, in the scenarios presented here, its movement permanently deviates from the desired trajectory. To address this problem, we extend the single chaotic CPG to multiple CPGs with learning. The learning mechanism is based on a simulated annealing algorithm. In a normal situation, the CPGs synchronize and their dynamics are identical. With leg malfunction or disability, the CPGs lose synchronization leading to independent dynamics. In this case, the learning mechanism is applied to automatically adjust the remaining legs' oscillation frequencies so that the robot adapts its locomotion to deal with the malfunction. As a consequence, the trajectory produced by the multiple chaotic CPGs resembles the original trajectory far better than the one produced by only a single CPG. The performance of the system is evaluated first in a physical simulation of a quadruped as well as a hexapod robot and finally in a real six-legged walking machine called AMOSII. The experimental results presented here reveal that using multiple CPGs with learning is an effective approach for adaptive locomotion generation where, for instance, different body parts have to perform independent movements for malfunction compensation.Comment: 48 pages, 16 figures, Information Sciences 201

    Intensity Mapping Functions For HDR Panorama Imaging: Weighted Histogram Averaging

    Full text link
    It is challenging to stitch multiple images with different exposures due to possible color distortion and loss of details in the brightest and darkest regions of input images. In this paper, a novel intensity mapping algorithm is first proposed by introducing a new concept of weighted histogram averaging (WHA). The proposed WHA algorithm leverages the correspondence between the histogram bins of two images which are built up by using the non-decreasing property of the intensity mapping functions (IMFs). The WHA algorithm is then adopted to synthesize a set of differently exposed panorama images. The intermediate panorama images are finally fused via a state-of-the-art multi-scale exposure fusion (MEF) algorithm to produce the final panorama image. Extensive experiments indicate that the proposed WHA algorithm significantly surpasses the related state-of-the-art intensity mapping methods. The proposed high dynamic range (HDR) stitching algorithm also preserves details in the brightest and darkest regions of the input images well. The related materials will be publicly accessible at https://github.com/yilun-xu/WHA for reproducible research.Comment: 11 pages, 5 figure

    NDDepth: Normal-Distance Assisted Monocular Depth Estimation and Completion

    Full text link
    Over the past few years, monocular depth estimation and completion have been paid more and more attention from the computer vision community because of their widespread applications. In this paper, we introduce novel physics (geometry)-driven deep learning frameworks for these two tasks by assuming that 3D scenes are constituted with piece-wise planes. Instead of directly estimating the depth map or completing the sparse depth map, we propose to estimate the surface normal and plane-to-origin distance maps or complete the sparse surface normal and distance maps as intermediate outputs. To this end, we develop a normal-distance head that outputs pixel-level surface normal and distance. Meanwhile, the surface normal and distance maps are regularized by a developed plane-aware consistency constraint, which are then transformed into depth maps. Furthermore, we integrate an additional depth head to strengthen the robustness of the proposed frameworks. Extensive experiments on the NYU-Depth-v2, KITTI and SUN RGB-D datasets demonstrate that our method exceeds in performance prior state-of-the-art monocular depth estimation and completion competitors. The source code will be available at https://github.com/ShuweiShao/NDDepth.Comment: Extension of previous work arXiv:2309.1059
    • …
    corecore